5174

Low Temperature Heat Capacities of Inorganic Solids. IV. Heat Capacities and Entropies of Lithium Hydroxide and of Lithium Hydroxide Monohydrate from 15 to 300° K. Third Law Check on the Entropies Through the Reaction LiOH + H₂O (Gas) = LiOH·H₂O¹

BY THOMAS W. BAUER, HERRICK L. JOHNSTON AND EUGENE C. KERR

Introduction

No previous measurements of low-temperature heat capacities have been reported in the literature for either LiOH or LiOH H_2O . However, Kelley² has recalculated a value for the entropy of LiOH at 25° from cell data obtained by Ueda³ for the cell

Li (amalgam. 0.035%) LiOH·H₂O (saturated) HgO. Hg

and obtained the value 12.8 cal. per mole per degree. It appeared desirable to check this value calorimetrically and also to obtain the entropy of the monohydrate.

Apparatus and Materials

Relatively pure lithium hydroxide, obtained from the Metalloy Corporation of Minneapolis, was purified by recrystallization of the monohydrate from triple-distilled water, and the monohydrate was then decomposed at 150° to LiOH in a stream of carbon-dioxide free air. Spectrographic analyses showed that the purified material contained less than 0.001% Si, Mg, Fe, Al, Cu, Na, Ni and Ca, and therefore no correction was applied for these impurities. Titration with hydrochloric acid gave a purity of $99.9 \pm 0.2\%$.

Pure lithium hydroxide monohydrate for use in the calorimeter was prepared from the recrystallized monohydrate by desiccating over anhydrous lithium hydroxide to remove excess moisture; this method was necessary since vacuum drying or air drying causes appreciable dissociation.³ Titration of the desiccated material with standard hydrochloric acid yielded 0.9993 \pm 0.0027 for the molal ratio H₂O/LiOH. Spectrographic analysis showed that the desiccated material contained 0.01% Si and less than 0.001% of Mg, Fe, Al, Cu, Ni and Ca.

Experimental Data and Results

The calorimetric data were obtained with calorimeter No. 3, whose construction and operation have been described in a previous paper⁴ from this Laboratory. Measurements were made with the calorimeter filled with 31.069 g. (1.2973 moles) of LiOH and, later, with 54.541 g. (1.2997 moles) of LiOH $H_{2}O$.

(1) This was supported in part by the Office of Naval Research under contract with The Ohio State University Research Foundation.

(3) Y. Uedu, J. Chem. Soc. Japan, 52, 740 (1931); Sci. Reports. Tohoku Imp. Univ., [1] 22, 448 (1933).

(4) H. L. Johnston and E. C. Kerr, THIS JOURNAL, 72, 4733 (1950).

The experimental values of the molal heat capacities, in defined thermochemical calories, are given in Tables I and II.

-				
		Тав	le II	
TABLE I		Molal Heat Capacity		
Molal Heat Capacity		OF LITHIUM HYDROXIDE		
OF LITHIUM HYDROXIDE.		Monohydrate.		
LiC	ЭH	LiOH·H ₂ O		
Mol. wt. 23.94	1: 1.2973 moles	Mol. wt. 41.96; 1.2977 moles		
Temp., °K,	Cp. cal./deg./mole	Temp., °K.	Cp. cal/deg/mole	
15.91	0.090	15.81	0.064	
18.66	.131	18.49	.121	
20.89	. 181	20.76	. 198	
22.97	. 244	23.34	. 281	
25.82	.315	26.00	. 385	
28.86	. 396	29.95	. 544	
30.71	.457	32.93	.760	
33.39	. 554	36.45	1.005	
36.55	.667	40.73	1.288	
40.06	.798	44.64	1.647	
44.04	.938	49.81	2.088	
44.75	1.000	55.29	2.573	
48.95	1.142	60.16	3.024	
54.20	1.335	64.53	3.388	
58.94	1.550	70.39	3.911	
61.10	1.654	77.65	4.604	
66.23	1.856	84.42	5.210	
71.92	2.098	91.14	5.784	
77.62	2.360	97.85	6.367	
84.08	2.677	104.40	6.907	
90.52	3.000	111.83	7.494	
96.7 6	3.322	118.39	8.041	
103 , 34	3.682	127.23	8.767	
109.49	4.014	135.96	9.408	
116.96	4.446	144.53	10.057	
124.56	4.883	153.76	10.708	
132.86	5.328	163.99	11.422	
141.97	5.829	175.44	12.217	
149.04	6.216	186.58	12.984	
162.75	6.904	198.00	13.687	
177.01	7.592	209.88	14.360	
191.45	$8.257 \\ 8.872$	220.19	14.923	
206.75 230.43		229.77	15.472	
230.43 239.44	$\frac{9.857}{10.137}$	23 9.38 24 8 .80	15.973 16.533	
239.44 248.88	10.398	240.00 258.04	16.999	
240.88 257.38	10.333	267.76	17.511	
275.93	11.316	277.29	17.970	
283.83	11.526	284.81	18.411	
292.32	11.725	286.53	18.459	
302.85	11,956	295.31	18.890	
		301.63	19.140	

⁽²⁾ K. K. Kelley, U. S. Bureau of Mines Bull. No. 434 (1941).

Smoothed values of the thermodynamic functions, obtained from the heat capacity data by graphical means, are entered in Tables III and IV. The heat capacities are believed accurate to within 0.2% above about 45° K., but may be in error by as much as 0.5% at 20° K. The molal entropies at 298.16° K. are 10.23 \pm 0.05. cal. per degree for LiOH and 17.07 \pm 0.05 cal. per degree for LiOH H_2O . Of these amounts 0.03 E. U. was contributed to each substance by Debye extrapolations below the respective temperatures of 15 and 14° K. where θ equals 285 for LiOH and 277 for LiOH H_2O .

TABLE III

THERMODYNAMIC FUNCTIONS OF LITHIUM HYDROXIDE BASED ON THE SMOOTH CURVE OF HEAT CAPACITY

Temp °K.	Cp. cal./deg./ mole	$H^{\circ} - H^{\circ}_{0}$. cal./mole	$(H^{\circ} - H^{\circ}_{\circ})/T$ cal./ deg./ mole	S°. cal./deg./ mole	-((F° - H°0)/T). cal./deg./ mole
16	0.085	0.340	0.021	0.028	0.007
25	. 290	1.945	.078	.105	.027
50	1,173	19.632	. 392	.560	.167
75	2.251	62.189	. 829	1.235	.405
100	3.491	133.49	1.335	2.047	.712
125	4.889	238.10	1.905	2.975	1.070
150	6.253	277.61	2.517	3.989	1.471
175	7.506	549.94	3.413	5.049	1.906
200	8.617	751.73	3.759	6.125	2.366
225	9.603	979.72	4.354	7.198	2.844
250	10.494	1231.2	4.925	8.257	3.332
275	11.277	1503.6	5.468	9.295	3.827
298.16	11.849	1771.7	5.942	10.231	4.228
300	11.888	1793.5	5.979	10.304	4.325

TABLE IV

THERMODYNAMIC FUNCTIONS OF LITHIUM HYDROXIDE MONOHYDRATE BASED ON THE SMOOTH CURVE OF HEAT CAPACITY

	Cp.		$\begin{array}{c} (H^{\circ} - H^{\circ})/T.\\ cal./ \end{array}$	S°.	$\frac{-((F^{\circ} - H^{\circ})/T)}{H^{\circ}}$
°K.	cal./deg./ mole	H° − H°o. cal./mole	deg./ mole	cal./deg./ mole	cal./deg./ mole
16	0.090	0.359	0.022	0.030	0.007
25	0.343	2.139	.086	.114	.028
50	2.109	30.352	.607	.825	.218
75	4.353	110.97	1.480	2.102	. 622
100	6.539	247.47	2.475	3.658	1.183
125	8.590	436.89	3.495	5.340	1.845
150	10.486	675.67	4.505	7.103	2.599
175	12.233	959.89	5.485	8.825	3.340
200	13.792	1285.4	6.427	10.562	4.135
225	15.214	1648.2	7.325	12.270	4.945
250	16.561	2045.5	8.182	13.943	5.761
275	17.858	2475.9	9.003	15.583	6.580
298.16	19.001	2902.9	9.736	17.073	7.337
300	19.100	2938.0	9.293	17.190	7.397

Thermodynamic Calculations

Third Law Check on the Entropies Through the Dissociation Pressure of LiOH H₂O.— Ueda³ measured dissociation pressures of LiOH H_2O between 20 and 40° by a tensimeter method and also determined heats of solution of both LiOH and LiOH H_2O in sufficient water to form 0.13889 *M* LiOH solutions. He obtained 3.90 mm. for the dissociation pressure at 25° with an apparent precision of ± 0.02 mm. The integral heats of solution, to form solutions containing one mole of LiOH in 400 moles of water, were 4887 cal. and 867 cal. for LiOH and LiOH H_2O , respectively. The heat of solution data correspond to the reaction

LiOH H₂O (cryst.) = LiOH (cryst.) + H₂O (liq.) (1)

$$\Delta H^{\circ}_{25} = 4020 = 20 \text{ cal.}$$

which agrees with de Forcrand's⁵ calorimetric value for the same reaction, when corrected to 25° . These several data, combined with the value selected by Wagman and collaborators⁶ as the best value for the molal heat of vaporization of water at 25°, namely, 10,520 = 3 calories, yield for the reaction

LiOH·H₂O(cryst.) = LiOH(cryst.) + H₂O(gas) (2)

$$\Delta F^{\circ}_{25} = 3124 \pm 3 \text{ cal.}$$

 $\Delta H^{\circ}_{25} = 14.540 \pm 23 \text{ cal.}^{7}$
 $\Delta S^{\circ}_{25} = 38.29 \pm 0.09 \text{ cal. per degree}$

Using Gordon's⁸ accurate spectroscopic value of the entropy of water vapor, namely, S_{25}° equals 45.10 E. U., we obtain 6.81 = 0.1 E. U. for the difference between the molal entropies of LiOH-H₂O (crystalline) and LiOH (crystalline). This difference agrees accurately with the difference between our own "Third Law" entropies, namely, 6.84 = 0.1 E. U., and confirms the application of the Third Law to both LiOH and LiOH·H₂O.

Summary

Heat capacities of lithium hydroxide and of its monohydrate have been measured from 15 to 300° K. Integration of the heat capacity curves yields molal entropy values, at 298.16° K. of 10.23 ± 0.05 E. U. for lithium hydroxide and 17.07 ± 0.05 E. U. for lithium hydroxide monohydrate.

The change in entropy at 25° for the reaction LiOH·H₂O(cryst.) = LiOH(cryst.) + H₂O(gas) obtained from Ueda's³ data for dissociation pressures of the hydrate and for heats of solution of the two crystals, combined with the value 10,520 = 3 calories for the molal heat of vaporization of water, is in excellent agreement with ΔS°_{25} for the same reaction computed from our own experimental entropies for the entropy of steam.⁸ The two values agree to within 0.03 E. U., which is well within the experimental error limits of

(5) de Forcrand. Ann. chim. phys., [8] 15. 474 (1908).

(6) D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer and F. D. Rossini, J. Research Natl. Bur. Standards. 34, 143 (1945).

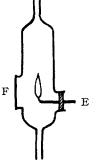
(7) A value for ΔH°_{11} can also be computed from Ueda's measurement of the temperature coefficient of the dissociation pressure. This value is 14,270 cal. per mole but, as recognized by Ueda, is considerably more uncertain than the calorimetric value.

(8) A. R. Gordon, J. Chem. Phys., 2, 65 (1934).

 ± 0.2 E. U., and confirms the application of the LiO Third Law to the calorimetric entropies of both Court

LiOH and LiOH·H₂O. COLUMBUS 10. OHIO

Received May 19, 1950


[CONTRIBUTION FROM THE CHEMICAL LABORATORY, FACULTY OF SCIENCE, TOKYO UNIVERSITY]

Chemical Reaction in the Torch Discharge in Carbon Monoxide and Carbon Dioxide

By San-ichiro Mizushima, Yonezo Morino, Hisao Hirabayashi, Koji Kakihara and Yojiro Mizushima

At high frequencies the discharge from a single electrode can take place in the form of a flame and is called a "Torch Discharge."¹ The present paper deals with the spectroscopic observation of such a discharge in carbon monoxide and in carbon dioxide and the consideration of chemical reactions taking place in the discharge vessel. The vessel is shown in Fig. 1, where F is the quartz window and E a single electrode connected to a resonance circuit coupled with an oscillator of 7 m. wave length (output 1.5 kw.). The emission spectra of

different parts of the flame were photographed with two spectrographs, one having glass optics and the other quartz optics. The height of the three prisms used in the former amounted to 12–15 cm. and the focal length of the camera lens to 150 cm.

At ordinary pressures the discharge takes place in the form of a flame as shown in Fig. 1. However, as pressure is lowered, the contour of the flame becomes more diffuse until the luminous part covers the whole vessel. In the case of discharge in carbon monoxide a considerable amount of

Fig. 1.—The discharge vessel.

carbon was produced, while no such reaction was observed in the case of carbon dioxide.

The observed bands are shown in Table I. Appearance of CN and OH bands is due to a small quantity of air and water vapor contained in the sample of carbon monoxide and their intensities could be made weaker by more careful preparation of the sample.

We see that at ordinary pressures there appear in the vicinity of the electrode the bands whose excitation requires high energy, while in the general part of the flame, only those of low excitation energy are observed. At lower pressures the bands of higher excitation energy can also appear (see Fig. 2). These would be due to the fact that at ordinary pressures electrons with high kinetic energy are only found in the vicinity of the electrode, where the electric field is intense, while under low pressure even the electrons in the general part of the flame would have sufficient kinetic energy to excite the higher energy bands owing to the in-

(1) K. N. Mochalov, C. R. Acad. Sci. U. R. S. S., 18, 329 (1938); 20, 297 (1938).

THE BAND SP	ectra Observed in th	ie Discharge Vessel
	Carbon mono Ordinary press.	xide. bands Low press.
	CO ångström	CO ångström
	CO 3rd positive	CO 3rd positive
	CO 4th positive	
Electrode	C2 Swan	
	CN red and violet	
	OH	
	Cu atomic lines	
	C2 Swan	CO ångström
Flame	CN red and violet	
	OH	
	Carbon diox	
	Ordinary press.	Low press.
	CO Ångström	CO ångström
	CO 3rd positive	
Electrode	CO 4th positive	
	OH	
	Cu atomic lines	
Flame	Continuous	CO ångström
	OH	50 50

TABLE I

crease in the mean free path and to the change of intensity distribution of the field.

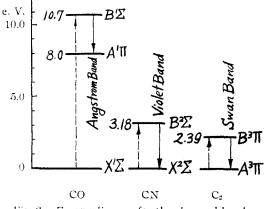


Fig. 2.—Energy diagram for the observed bands.

The remarkable difference in the torch discharge between carbon monoxide and dioxide is that free carbon was produced and C_2 Swan bands were observed in the former substance, but not in the latter. This may be explained by assuming in the first place that the chemical reaction in carbon monoxide proceeds as